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One-loop contribution to the dynamical exponents in spin
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Abstract. We evaluate the corrections to the mean-field values ok tardz exponents at the
first order in thee-expansion, forT = T.. We find that bothx andz are decreasing when the
space dimension decreases.

We want to investigate the purely relaxational dynamics of a short-range spin-glass model
for T — T;, in the framework of the-expansion. The dynamical properties of the model in
the mean-field theory are very different from those of the models whose dynamical properties
are usually investigated in the literature. These new features make the computation of the
dynamical critical exponents much more involved than that of the usual models.

In a previous work, [6], we evaluated the Gaussian dynamical fluctuations of the order
parameter around the mean-field limit. The aim of this letter is to pursue this analysis,
by considering the one-loop correction to the mean-field (MF) theory in a renormalization
group calculation. To first order iy unlike Zippelius [5], we find results that disagree with
the conventional Van Hove theory, because we obtain a correction to the kinetic coefficient
already to lowest order in the loop expansion. In this work, first we evaluate the correction
to the MF value of the critical exponentthat describes the critical slowing down of the
dynamical order parameter at the critical point, then we evaluate the correction to the
exponent that describes the critical slowing down of the dynamical spin-glass susceptibility
xsc. Finally, we check that the scaling law, which connects these two exponents, is verified.

We study the soft-spin version of the Edwards—Anderson (EA) model given by the
Hamiltonian

1 , 1 4
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where J;; are random Gaussian interactions between the nearest-neighbours sites, with zero

average and mean-square ﬂuctuatic(dg-}z] = j?/n (n is the coordination number). Purely
relaxation dynamics is introduced by the Langevin equation

F_lasi(t) _ _9(BR)
o ar ds; (1)

where n is the usual Gaussian noise with zero average and varigncen;(t')) =
(2/T0)8;;8(t—1"). The interesting physical quantities in MF theory are the averaged response

+ i (1) (2
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and correlation functions, defined respectively by

[t
Gir—1t) = [ ) }J (3)
C(t—1) =[{s:()si(1)y], 4

where the angular brackets), refer to averages over the noise and the square brackets
[..]; over quenched disorder.

Moreover, considering the Gaussian fluctuation, we can define the dynamical spin-glass
susceptibility as follows

(51 (13)), D (rzw . 5)
J

| — itg— 1ty — 1g) =
xsc(i — jitz— 11,12 — 1) |:ahj(t1) D 1)

The dynamical scaling implies that the decay@f) is governed by a characteristic
time 7, which diverges af, as, for longt, we can write

1
c@) = t767+(t/7) (6)

whereg* is the universal scaling function in the regigh — 7. The relaxation time
divergence, at the critical point, is connected to the correlation length divergence through
the dynamical exponent

T o £ @)

According to the scaling hypothesis, this exponent is related to the slowing down of the
spin-glass susceptibility, and we expect to have

xsalk, @) = @@ f(k* fw). ®)

The MF behaviour of this modek(= N, number of spins, long-range limit), in the
critical region, is well known [1-3]. In the low-frequency limit the response and correlation
functions are respectively

Gw) =1 —-+V—iw) 9)
— 2
C = — 10
@ Vio + V- (10)
while, in the Gaussian approximation, the spin-glass susceptibility is
- v

k, w1, wp) = - E—
xsc(k, w1, wz) 21 e Jion

The MF value of the dynamical critical exponentsand z, as known, are 2 and 4,
respectively.

To deal with Langevin disordered dynamic theory, as usual we use the dynamic
functional integral method [7]. In this formalism, it is conventional to introduce an auxiliary
field 5;(r) and to define an effective Lagrangian of an Hubbard—Stratanovicthé‘ﬁict, th,

[2,5], such as

20082 (11, 1)) Liguy) = [(@ (1B 1)) 5] (12)

where the two-component vector field is defined as

o = (15, 51). (13)
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In considering the correction to the MF approximation we derive the following Lagrangian
as series an expansion around the order parameter saddle-poinQ#ler’), [3, 5, 6]:

LEQH) == "> K 1801 (1, 1A’ 50) (1, 1)

ti,ty i,

1 af afys 1Z)
+5 D D 807 (. t)CP 1y 12, 13, 1) Q) (13, 1a)

f,12,13,14 i

1

o Y D CP by, 1, 4, 15, 16)8 O (11, )8 Q) (13, 1a)

T t,tp,03,1a,15,06 0

x8 Q! (15, t6). (14)

For the structure and the meaning of each term of (14), the reader is referred to [6]. The
non-local connected propagators of the theory are defined as follows:

GV (i — ji 11, 2. 13, 12) = ({7 (11)9f (1)) (1209 (1a)),]s — [ (109! (12)),],
<[] (1092 (ta))y]s =4 (K™D > (K Y
1 k

X (807 (11, 12)8 Q) (13, 18)) L(0up) — 20K 1 APY08(1— 3)5(2— 4.  (15)

In [6] we evaluated the critical behaviour of these propagators for each combination of
the indicesa, 8, v, § and in any time interval, when the cubic interactions vanish. We
write down the general structure 672*(w1, wy, w3, w4) Which is present in several of the
following one-loop functions

G??X(k; w1, wp, w3, wa) = [8(w1 + ©3)8(wz + wa) + 8(w2 + w3)8 (w1 + wa)]
5 ~ 2211
xG? Y k; wrwo) + 8(w1 + w2 + w3+ wa)G  (k; w1, wp, w3, W) (16)

where
- 1
G YM(k; wr, wo) = 7
G one2) = ey i + Vi -
~ 2211 _ ~ = ~
G (k 1, w2, w3, wa) = (C@1) G2 (k; —w1, w2) + Cw2) G2Hk; w1, —w2))
x G?2Yk; w1, 02) GP2 Nk — w3, —wa) g, (k; w1 4 @2) (18)

2
grk; w1 + wp) = (ck2~|—\/—i(w1+a)2)> F1 (W) (19)
where F;(x) is an homogenous function &f/./w.

The functional form of the propagators evaluated in [6] is different from that found in [5].
Also the two analytical approaches are different. We have computed, [6], the propagators
by performing an expansion in the quartic coupling consam@ind resumming the most
relevant contributions. In [5], the propagators were evaluated directly in the hard spin limit

by assuming some approximations whose consequences can be hardly predicted (e.g. the
~ 2211

term G is supposed to be zero). It is not surprising that starting from rather different
forms of the propagators we obtain different values for the critical exponents. Moreover in
[5] there is an inconsistent result: the one-loop contribution to the MF vattfe (that is

of order Q) with respect toQ*#) is found to be vanishing while the correction to the
exponent evaluated by the scaling law= d — 2 + n/2z, wherez = 2(2 — n), is different

from zero. Our calculations are not affected by these kinds of problems.
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We recall that in this formalism the time-dependent spin-glass susceptibility (5) is

Xso(i = Ji ta = 11, 12 — 1a) = [(s; (22)n; (1)) (s (12)mi (1a)),); = G2 — i 13 — 11, 12 — ta).
(20)

Let us consider the one-loop correction to the ‘free’ theory. We intend to use the
propagators derived in [6] to evaluate the contribution of the one-loop Feynman diagrams
to the mean valu@*#, to the bare propagatos**”?, and to the bare cubic vertices.

We consider the one-loop Feynman diagrams assgries expansion, by using the
correspondent propagators. In analogy with the static case, we can guess that the
dependent part of the one-loop corrections is not singular at the critical point, as soon
asg # 0. The physical quantities must not be affected by the valug pfovided that it is
not zero. The behaviour gt= 0 is rather different and the-expansion starts from» = 8,

[10].

Concerning the one-point function, let us consider the response function which as a

consequence of equation (12) is

G(w) = 2(Q%(w)). (21)

B2 C2
1 2 1 2

Figure 1. One-loop diagrams that contribute to theexponent.

The diagrams that occur in one-loop correction to the MF value ofctb&ponent are
shown in figure 1: two continuous lines represent a bare propagator factorized in time

G (; wi, w2)[8(w1 + w3)8 (w2 + @a) + (w1 + W2)8 (@ + w3)]
three lines the bare propagator connected in time
z afys
G (ki w1, w2, w3, w4)d (w1 + w2 + W3+ Wa)
and, finally, the triangle in the centre of the diagrams is a cubic vertex factorized in time.
We succeed in evaluating the singular behaviour of the diagramand A,, while we
have to use a trick to take into account the contribution from the others. By using the

series expansion ig of the propagators in the loop, see [6], we obtain a correspongdent
series of the two one-particle irreducible (1P.l.) diagrams, but the zero term is missing. Let
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us add and subtract the term we need. As in the static case (where we deal with just the
momentum variablé, and we easily manage to resum giseries), we can suppose that the
resummation of the series gives a non-singular behaviour at the critical point (the presence
of g removes the pole at zero momentum for= 7;). We are left with the diagram4,

A, and with the two diagrams of zero order gnthat we need for the series resummation
(with negative sign) (see figure 2):

d d
(u)z[/dk 1 _ d“k 1.:|' 22)
2 2m)4 ck? + 2w (21) ck? 4+ Viw
The propagators involved in these ‘new’ diagrams are represented in figure 2 with two
crossed lines. By evaluating the previous integralsdfes 6, we find that, to first order in
the loop expansion, the response function is

G(w) =1— (—iw)* = G(w) + 2u (8 Q*(w))
=1—+—iw— ko u? [I(w =0 + 1«/—iwln(w)] ) (23)
(2m)® 4
As for the static case has been introduced as the expansion parameter in the cubic vertices,
to apply the renormalization group method for critical phenomena. The fatiorequation
(23) is due to the fact that the saddle-point response function (9) is of Gtgley.

B2 Cz2

1 2 1 2

Figure 2. g-series resummation of the one-loop diagram contribution toctegponent.

In the same way, we derive the flux equation of the 1P.l. vertex functions which allow
us to determine the fixed point below six dimensions. As for the conventional Langevin
dynamical theories, the IR stable fixed point below six dimensions is the same as that for
the static case (i.e. we find the same relevant diagrams):

2 (27'[)6 €
(u)" = ke 2
The series expansion infor the static exponents is evaluated to third order in [8] and [9].

Let us determine the first-order correction for the dynamical case. Substituting the fixed

point value (24) into (23) we obtain for
1 €

x=§<1—2). (25)

(24)
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G

Figure 3. g-series resummation of the one-loop diagram contribution to the self-energy.

In the same way, we find that the relevant one-loop 1P.l. diagrams for the self-energy
(w1, w2), shown in figure 3, give the following contribution to the spin-glass susceptibility
(20):

A u? / &k ( 1 1 ) (26)
' 2 ) @0 \e(p = k2?4 2Viwr ck? + Viwr + /=i,
B- u? d?k < 1 1 ) 27)
' 2 ) \c(p — k)2 + 2/=iw, ck? + /iwy + /—iw)
2 1d
c: v d"( L L ) (28)
2 ) @m)? \c(p — k)2 + Jiwy ck? + /—=iw
2 d
D: EPLAN K. ( o t > (29)
2 (2m)d c(p—k)2+ /—iwy ck? + /iwy
2
E: o e f 'k e (30)
2 cp?+2Jiwr ] @) ck? 4+ 2/iwy
u? 1 d“k 1
F: —2-2 31
2 cp242J/iw ) @r) ck? + fiwy (1)
2
G: ) 1 d'k o (32)
2 cp2 + 2«/T(1)2 2m)4 ck? + 2\/Ta)2
2 d
Y- u 1 dk 1 (33)

—-2—-2 .
2 cp242/—iwy ) (2m) ck? 4+ /—=iws
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To first order ine, the sum of the contributions to theexponent of the diagrams A, B, C
and D vanishes. On the other hand, from the sum of the diagrams E, F, G and H we obtain
the following contribution to the 1P.l. two-point function:

X5o(P: —01, )| _o = xsd(—01, @2) + S(wr, @2)
2
- . k - .
=lw1 4+ —lwr + MZ (?6)6 (\/ w1 IN(w1) + v/ —iw2 |n(a)2)) . (34)
At the fixed pointu* given from (24), we obtain the following correction to the
exponent:

(2—mn) €
= =4(1- ). 35
e 00 .
The scaling relation between the exponentandz, which we recall to be
d—2
x= et (36)
27

is verified, to first order ire.

Numerical simulations for the exponentsand z can be found in the literature, the
values arez ~ 7 andx ~ 0.06 in dimensionsD = 3, [11], andz ~ 5 andx ~ 0.15 in
dimensionsD = 4, [12]. Our prediction states that both the values @indz are decreasing
when the dimension decreases. This is truexfdrut not forz. The apparent discrepancy
that we have with the behaviour gfshould not worry us. In fact, also in the static case, the
critical exponents for spin glasses have a badly convergexpansion and the prediction
of this expansion can be hardly applied in three or four dimensions.

A numerical study of what happens in five dimensions is necessary. Moreover, it should
be noted that usual arguments imply that our computation predicts, without ambiguities, that
the logarithmic corrections in six dimensions are such to decrease the effective value of the
exponents.
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