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One-loop contribution to the dynamical exponents in spin
glasses
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Aldo Moro, Roma 00185, Italy
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Abstract. We evaluate the corrections to the mean-field values of thex andz exponents at the
first order in theε-expansion, forT = Tc. We find that bothx andz are decreasing when the
space dimension decreases.

We want to investigate the purely relaxational dynamics of a short-range spin-glass model
for T → T +c , in the framework of theε-expansion. The dynamical properties of the model in
the mean-field theory are very different from those of the models whose dynamical properties
are usually investigated in the literature. These new features make the computation of the
dynamical critical exponents much more involved than that of the usual models.

In a previous work, [6], we evaluated the Gaussian dynamical fluctuations of the order
parameter around the mean-field limit. The aim of this letter is to pursue this analysis,
by considering the one-loop correction to the mean-field (MF) theory in a renormalization
group calculation. To first order inε, unlike Zippelius [5], we find results that disagree with
the conventional Van Hove theory, because we obtain a correction to the kinetic coefficient
already to lowest order in the loop expansion. In this work, first we evaluate the correction
to the MF value of the critical exponentx that describes the critical slowing down of the
dynamical order parameter at the critical point, then we evaluate the correction to thez

exponent that describes the critical slowing down of the dynamical spin-glass susceptibility
χSG. Finally, we check that the scaling law, which connects these two exponents, is verified.

We study the soft-spin version of the Edwards–Anderson (EA) model given by the
Hamiltonian

βH = −β
∑
〈ij〉

Jij sisj + 1

2
r0
∑
i

s2
i +

1

4!
g
∑
i

s4
i (1)

whereJij are random Gaussian interactions between the nearest-neighbours sites, with zero
average and mean-square fluctuations [(Jij )

2] = j2/n (n is the coordination number). Purely
relaxation dynamics is introduced by the Langevin equation

0−1
0

∂si(t)

∂t
= −∂(βH)

∂si(t)
+ ηi(t) (2)

where η is the usual Gaussian noise with zero average and variance〈ηi(t)ηj (t ′)〉 =
(2/00)δij δ(t−t ′). The interesting physical quantities in MF theory are the averaged response
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and correlation functions, defined respectively by

G(t − t ′) =
[
∂〈si(t)〉η
∂hi(t ′)

]
J

(3)

C(t − t ′) = [〈si(t)si(t ′)〉η]J (4)

where the angular brackets〈..〉η refer to averages over the noise and the square brackets
[..]J over quenched disorder.

Moreover, considering the Gaussian fluctuation, we can define the dynamical spin-glass
susceptibility as follows

χSG(i − j ; t3− t1, t2− t4) =
[
∂〈si(t3)〉η
∂hj (t1)

∂〈si(t2)〉η
∂hj (t4)

]
J

. (5)

The dynamical scaling implies that the decay ofC(t) is governed by a characteristic
time τ , which diverges atTc, as, for longt , we can write

C(t) = 1

tx
q̃+(t/τ ) (6)

where q̃+ is the universal scaling function in the regionT → T +c . The relaxation time
divergence, at the critical point, is connected to the correlation length divergence through
the dynamical exponentz:

τ ∝ ξz. (7)

According to the scaling hypothesis, this exponent is related to the slowing down of the
spin-glass susceptibility, and we expect to have

χSG(k, ω) = ω(2−η/z)f̃ (kz/ω). (8)

The MF behaviour of this model (n = N , number of spins, long-range limit), in the
critical region, is well known [1–3]. In the low-frequency limit the response and correlation
functions are respectively

G(ω) = (1−√−iω) (9)

C(ω) = 2√
iω +√−iω

(10)

while, in the Gaussian approximation, the spin-glass susceptibility is

χSG(k, ω1, ω2) = 1

k2+√−iω1+
√−iω2

. (11)

The MF value of the dynamical critical exponentsx and z, as known, are 1/2 and 4,
respectively.

To deal with Langevin disordered dynamic theory, as usual we use the dynamic
functional integral method [7]. In this formalism, it is conventional to introduce an auxiliary
field ŝi (t) and to define an effective Lagrangian of an Hubbard–Stratanovich fieldQ

αβ

i (t, t
′),

[2, 5], such as

2〈Qαβ

k=0(t1, t2)〉L(Qαβ) = [〈φαi (t1)φβi (t2)〉η]J (12)

where the two-component vector field is defined as

φαi = (iŝi , si). (13)
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In considering the correction to the MF approximation we derive the following Lagrangian
as series an expansion around the order parameter saddle-point valueQαβ(t, t ′), [3, 5, 6]:

L(δQαβ) = −
∑
t1,t2

∑
i,j

K̃−1
i,j δQ

αβ

i (t1, t2)A
αβγ δδQ

γδ

j (t1, t2)

+1

2

∑
t1,t2,t3,t4

∑
i

δQ
αβ

i (t1, t2)C
αβγ δ(t1, t2, t3, t4)δQ

γδ

i (t3, t4)

+ 1

3!

∑
t1,t2,t3,t4,t5,t6

∑
i

Cαβγ δµν(t1, t2, t3, t4, t5, t6)δQ
αβ

i (t1, t2)δQ
γδ

i (t3, t4)

×δQµν

i (t5, t6). (14)

For the structure and the meaning of each term of (14), the reader is referred to [6]. The
non-local connected propagators of the theory are defined as follows:

Gαβγ δ(i − j ; t1, t2, t3, t4) = [〈φαi (t1)φβi (t2)φγj (t3)φδj (t4)〉η]J − [〈φαi (t1)φβi (t2)〉η]J
×[〈φγj (t3)φδj (t4)〉η]J = 4

∑
l

(K̃−1)il
∑
k

(K̃−1)jk

×〈δQαβ

l (t1, t2)δQ
γδ

k (t3, t4)〉L(Qαβ) − 2(K̃−1)ijA
αβγ δδ(1− 3)δ(2− 4). (15)

In [6] we evaluated the critical behaviour of these propagators for each combination of
the indicesα, β, γ, δ and in any time interval, when the cubic interactions vanish. We
write down the general structure ofG2211(ω1, ω2, ω3, ω4) which is present in several of the
following one-loop functions

G2211(k;ω1, ω2, ω3, ω4) = [δ(ω1+ ω3)δ(ω2+ ω4)+ δ(ω2+ ω3)δ(ω1+ ω4)]

×G̃2211(k;ω1ω2)+ δ(ω1+ ω2+ ω3+ ω4)
˜̃
G

2211
(k;ω1, ω2, ω3, ω4) (16)

where

G̃2211(k;ω1, ω2) = 1

ck2+√−iω1+
√−iω2

(17)

˜̃
G

2211
(k;ω1, ω2, ω3, ω4) = (C(ω1)G̃

2211(k;−ω1, ω2)+ C(ω2)G̃
2211(k;ω1,−ω2))

×G̃2211(k;ω1, ω2)G̃
2211(k;−ω3,−ω4)gr(k;ω1+ ω2) (18)

gr(k;ω1+ ω2) =
(
ck2+

√
−i(ω1+ ω2)

)
F1

(
k2

(ω1+ ω2)1/2

)
(19)

whereF1(x) is an homogenous function ofk2/
√
ω.

The functional form of the propagators evaluated in [6] is different from that found in [5].
Also the two analytical approaches are different. We have computed, [6], the propagators
by performing an expansion in the quartic coupling constantg and resumming the most
relevant contributions. In [5], the propagators were evaluated directly in the hard spin limit
by assuming some approximations whose consequences can be hardly predicted (e.g. the

term ˜̃G
2211

is supposed to be zero). It is not surprising that starting from rather different
forms of the propagators we obtain different values for the critical exponents. Moreover in
[5] there is an inconsistent result: the one-loop contribution to the MF valueQαβ (that is
of order O(ε) with respect toQαβ) is found to be vanishing while the correction to thex
exponent evaluated by the scaling lawx = d − 2+ η/2z, wherez = 2(2− η), is different
from zero. Our calculations are not affected by these kinds of problems.
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We recall that in this formalism the time-dependent spin-glass susceptibility (5) is

χSG(i − j ; t3− t1, t2− t4) = [〈si(t3)ηj (t1)〉η〈sj (t2)ηi(t4)〉η]j = G̃1221(i − j ; t3− t1, t2− t4).
(20)

Let us consider the one-loop correction to the ‘free’ theory. We intend to use the
propagators derived in [6] to evaluate the contribution of the one-loop Feynman diagrams
to the mean valueQαβ , to the bare propagatorsGαβγ δ, and to the bare cubic vertices.

We consider the one-loop Feynman diagrams as ag-series expansion, by using the
correspondent propagators. In analogy with the static case, we can guess that theg-
dependent part of the one-loop corrections is not singular at the critical point, as soon
asg 6= 0. The physical quantities must not be affected by the value ofg, provided that it is
not zero. The behaviour atg = 0 is rather different and theε-expansion starts fromD = 8,
[10].

Concerning the one-point function, let us consider the response function which as a
consequence of equation (12) is

G(ω) = 2〈Q21
k=0(ω)〉. (21)
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Figure 1. One-loop diagrams that contribute to thex exponent.

The diagrams that occur in one-loop correction to the MF value of thex exponent are
shown in figure 1: two continuous lines represent a bare propagator factorized in time

G̃αβγ δ(k;w1, w2)[δ(ω1+ ω3)δ(ω2+ ω4)+ δ(ω1+ ω4)δ(ω2+ ω3)]

three lines the bare propagator connected in time

˜̃
G
αβγ δ

(k;w1, w2, ω3, ω4)δ(ω1+ ω2+ ω3+ ω4)

and, finally, the triangle in the centre of the diagrams is a cubic vertex factorized in time.
We succeed in evaluating the singular behaviour of the diagramsA1 and A2, while we
have to use a trick to take into account the contribution from the others. By using the
series expansion ing of the propagators in the loop, see [6], we obtain a correspondentg

series of the two one-particle irreducible (1P.I.) diagrams, but the zero term is missing. Let
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us add and subtract the term we need. As in the static case (where we deal with just the
momentum variablek, and we easily manage to resum theg-series), we can suppose that the
resummation of the series gives a non-singular behaviour at the critical point (the presence
of g removes the pole at zero momentum forT = Tc). We are left with the diagramsA1,
A2 and with the two diagrams of zero order ing that we need for the series resummation
(with negative sign) (see figure 2):(u

2

)
2

[∫
ddk

(2π)d
1

ck2+ 2
√

iω
− 2

∫
ddk

(2π)d
1

ck2+√iω

]
. (22)

The propagators involved in these ‘new’ diagrams are represented in figure 2 with two
crossed lines. By evaluating the previous integrals ford = 6, we find that, to first order in
the loop expansion, the response function is

G(ω) = 1− (−iω)x = G(ω)+ 2u〈δQ21(ω)〉
= 1−√−iω − k6

(2π)6
u2

[
I (ω = 0)+ 1

4

√−iω ln(ω)

]
. (23)

As for the static caseu has been introduced as the expansion parameter in the cubic vertices,
to apply the renormalization group method for critical phenomena. The factoru2 in equation
(23) is due to the fact that the saddle-point response function (9) is of order(1/u).
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Figure 2. g-series resummation of the one-loop diagram contribution to thex exponent.

In the same way, we derive the flux equation of the 1P.I. vertex functions which allow
us to determine the fixed point below six dimensions. As for the conventional Langevin
dynamical theories, the IR stable fixed point below six dimensions is the same as that for
the static case (i.e. we find the same relevant diagrams):

(u∗)2 = (2π)6

k6

ε

2
. (24)

The series expansion inε for the static exponents is evaluated to third order in [8] and [9].
Let us determine the first-order correction for the dynamical case. Substituting the fixed

point value (24) into (23) we obtain forx

x = 1

2

(
1− ε

4

)
. (25)
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Figure 3. g-series resummation of the one-loop diagram contribution to the self-energy.

In the same way, we find that the relevant one-loop 1P.I. diagrams for the self-energy
6(ω1, ω2), shown in figure 3, give the following contribution to the spin-glass susceptibility
(20):

A :
u2

2

∫
ddk

(2π)d

(
1

c(p − k)2+ 2
√

iω1

1

ck2+√iω1+
√−iω2

)
(26)

B :
u2

2

∫
ddk

(2π)d

(
1

c(p − k)2+ 2
√−iω2

1

ck2+√iω1+
√−iω2

)
(27)

C : −2
u2

2

∫
ddk

(2π)d

(
1

c(p − k)2+√iω1

1

ck2+√−iω2

)
(28)

D : −2
u2

2

∫
ddk

(2π)d

(
1

c(p − k)2+√−iω2

1

ck2+√iω1

)
(29)

E :
u2

2
2

1

cp2+ 2
√

iω1

∫
ddk

(2π)d
1

ck2+ 2
√

iω1
(30)

F : −2
u2

2
2

1

cp2+ 2
√

iω1

∫
ddk

(2π)d
1

ck2+√iω1
(31)

G :
u2

2
2

1

cp2+ 2
√−iω2

∫
ddk

(2π)d
1

ck2+ 2
√−iω2

(32)

H : −2
u2

2
2

1

cp2+ 2
√−iω2

∫
ddk

(2π)d
1

ck2+√−iω2
. (33)
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To first order inε, the sum of the contributions to thez exponent of the diagrams A, B, C
and D vanishes. On the other hand, from the sum of the diagrams E, F, G and H we obtain
the following contribution to the 1P.I. two-point function:

χ−1
SG(p;−ω1, ω2)

∣∣
p=0 = χ−1

SG(−ω1, ω2)+6(ω1, ω2)

=
√

iω1+
√
−iω2+ u

2

4

k6

(2π)6

(√
iω1 ln(ω1)+

√
−iω2 ln(ω2)

)
. (34)

At the fixed pointu∗ given from (24), we obtain the following correction to thez
exponent:

z = (2− η)
1
2

(
1+ 1

4ε
) = 4

(
1− ε

12

)
. (35)

The scaling relation between the exponentsx andz, which we recall to be

x = d − 2+ η
2z

(36)

is verified, to first order inε.
Numerical simulations for the exponentsx and z can be found in the literature, the

values arez ≈ 7 andx ≈ 0.06 in dimensionsD = 3, [11], andz ≈ 5 andx ≈ 0.15 in
dimensionsD = 4, [12]. Our prediction states that both the values ofx andz are decreasing
when the dimension decreases. This is true forx but not forz. The apparent discrepancy
that we have with the behaviour ofz should not worry us. In fact, also in the static case, the
critical exponents for spin glasses have a badly convergentε-expansion and the prediction
of this expansion can be hardly applied in three or four dimensions.

A numerical study of what happens in five dimensions is necessary. Moreover, it should
be noted that usual arguments imply that our computation predicts, without ambiguities, that
the logarithmic corrections in six dimensions are such to decrease the effective value of the
exponents.
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